ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Усов С.В.

В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.
  Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".
  Саша: "Я – отец Вали. Я – дочь Жени".
Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.

   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 18]      



Задача 117009

Темы:   [ Текстовые задачи (прочее) ]
[ Деление с остатком ]
Сложность: 3-
Классы: 5,6,7

B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось?

Прислать комментарий     Решение

Задача 117010

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 3-
Классы: 5,6,7

Из каждого клетчатого квадрата со стороной 3 клетки вырезается фигура из пяти клеток с таким же периметром, как у квадрата, но площадью 5 клеток. Саша утверждает, что сможет вырезать семь таких различных фигур (никакие две из них не совместятся при наложении, даже если фигуры переворачивать). Не ошибается ли он?

Прислать комментарий     Решение

Задача 117000

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Астролог считает, что 2013 год счастливый, потому что 2013 нацело делится на сумму  20 + 13.
Будет ли когда-нибудь два счастливых года подряд?

Прислать комментарий     Решение

Задача 117001

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Автор: Усов С.В.

В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.
  Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".
  Саша: "Я – отец Вали. Я – дочь Жени".
Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.

Прислать комментарий     Решение

Задача 117002

Темы:   [ Осевая и скользящая симметрии (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 5,6,7

Из квадратного листа бумаги сложили треугольник (см. рисунки). Найдите отмеченный угол.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .