ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Определим последовательности чисел (xn) и (dn) условиями  x1 = 1,  xn+1 = [  ],  dn = x2n+1 – 2x2n–1  (n ≥ 1).
Докажите, что число в двоичной системе счисления представляется в виде  (d1,d2d3...)2.

Вниз   Решение


Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 188]      



Задача 35744

Тема:   [ Подсчет двумя способами ]
Сложность: 2
Классы: 6,7,8

Ковровая дорожка покрывает лестницу из 9 ступенек. Длина и высота лестницы равны 2 метрам. Хватит ли этой ковровой дорожки, чтобы покрыть лестницу из 10 ступенек длиной и высотой 2 метра?
Прислать комментарий     Решение


Задача 104039

Тема:   [ Задачи-шутки ]
Сложность: 2
Классы: 7,8,9

Назовем натуральное число "изумительным", если оно имеет вид ab + ba (где a и b - натуральные числа). Например, число 57 - изумительное, так как 57 = 25 + 52. Является ли изумительным число 2006?
Прислать комментарий     Решение


Задача 108408

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 7,8,9

На электронных часах Казанского вокзала высвечиваются часы и минуты (например, 17:36). Сколько времени в течение суток на них
а) высвечивается цифра 2;
б) высвечиваются цифры 5 и 7 одновременно?
Прислать комментарий     Решение


Задача 21972

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 6,7,8

Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

Прислать комментарий     Решение

Задача 21977

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .