ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 99]
Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.
Докажите, что ни одно из чисел вида 103n+1 нельзя представить в виде суммы двух кубов натуральных чисел.
Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.
Назовём натуральное число n удобным, если n² + 1 делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.
а) Может ли квадрат натурального числа оканчиваться на 2? б) Можно ли, используя только цифры 2, 3, 7, 8 (возможно, по несколько раз), составить квадрат натурального числа?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 99] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|