Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что если в выпуклом шестиугольнике каждая из трех диагоналей, соединяющих противоположные вершины, делит площадь пополам, то эти диагонали пересекаются в одной точке.

Вниз   Решение


Известно, что в выпуклом n-угольнике  (n > 3)  никакие три диагонали не проходят через одну точку.
Найдите число точек (отличных от вершины) пересечения пар диагоналей.

ВверхВниз   Решение


Докажите равенство

$\displaystyle {\frac{2}{\pi}}$ = $\displaystyle \sqrt{\frac{1}{2}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}}$...


ВверхВниз   Решение


Дана клетчатая доска размером  а) 10×12;  б) 9×10;  в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия?

ВверхВниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

ВверхВниз   Решение


Сколько клеток пересекает диагональ в клетчатом прямоугольнике размерами 199 × 991?

ВверхВниз   Решение


Найдите остаток от деления 2100 на 101.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]      



Задача 30672  (#086)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9

Пусть  ka ≡ kb (mod kn).  Тогда  a ≡ b (mod n).

Прислать комментарий     Решение

Задача 30673  (#087)

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Найдите остаток от деления 2100 на 101.

Прислать комментарий     Решение

Задача 30674  (#088)

Тема:   [ Малая теорема Ферма ]
Сложность: 4
Классы: 9,10

Найдите остаток от деления 3102 на 101.

Прислать комментарий     Решение

Задача 30675  (#089)

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Докажите, что  3003000 – 1  делится на 1001.

Прислать комментарий     Решение

Задача 30676  (#090)

Тема:   [ Малая теорема Ферма ]
Сложность: 3+
Классы: 9,10

Найдите остаток от деления 8900 на 29.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .