ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если в выпуклом шестиугольнике
каждая из трех диагоналей, соединяющих противоположные
вершины, делит площадь пополам, то эти диагонали пересекаются в одной
точке.
Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку. Дана клетчатая доска размером а) 10×12; б) 9×10; в) 9×11. За ход разрешается вычеркнуть любую строку или любой столбец, если там есть хотя бы одна не вычеркнутая клетка. Проигрывает тот, кто не может сделать ход. Есть ли у кого-нибудь выигрышная стратегия? Доказать, что при любом целом положительном n сумма
Сколько клеток пересекает диагональ в клетчатом прямоугольнике размерами 199 × 991?
Найдите остаток от деления 2100 на 101. |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]
Пусть ka ≡ kb (mod kn). Тогда a ≡ b (mod n).
Найдите остаток от деления 2100 на 101.
Найдите остаток от деления 3102 на 101.
Докажите, что 3003000 – 1 делится на 1001.
Найдите остаток от деления 8900 на 29.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 99]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке