|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий. |
Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 559]
Докажите, что в плоском графе есть вершина, степень которой не превосходит 5.
Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий.
Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13.
Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.
Можно ли составить решётку, изображённую на рисунке
Страница: << 85 86 87 88 89 90 91 >> [Всего задач: 559] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|