Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Применим метод Ньютона (см. задачу 61328) для приближённого нахождения корней многочлена   f(x) = x² – x – 1. Какие последовательности чисел получатся, если
  а)  x0 = 1;   б)  x0 = 0?
К каким числам будут сходиться эти последовательности?
Опишите разложения чисел xn в цепные дроби.

Вниз   Решение


Пусть a и b – два положительных числа, причём  a < b.  Построим по этим числам две последовательности {an} и {bn} по правилам:

a0 = a,   b0 = b,   an+1 = ,   bn+1 =   (n ≥ 0).
Докажите, что обе эти последовательности имеют один и тот же предел.
Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается  μ(a, b).

ВверхВниз   Решение


Исследуйте последовательности на сходимость:
а) xn + 1 = $ {\dfrac{1}{1+x_n}}$,    x0 = 1;
б) xn + 1 = sin xn,     x0 = a $ \in$ (0;$ \pi$);
в) xn + 1 = $ \sqrt{a+x}$,    a > 0, x0 = 0.

ВверхВниз   Решение


Решить в простых числах уравнение  pqr = 7(p + q + r).

ВверхВниз   Решение


Марсианские амебы II. При помощи ним-сумм (смотри задачу 5.76) можно исследовать самые разные игры и процессы. Например, можно получить еще одно решение задачи 4.20.
Постройте на множестве марсианских амеб {ABC} функцию f, для которой выполнялись бы равенства

f (A) $\displaystyle \oplus$ f (B) = f (C),    f (A) $\displaystyle \oplus$ f (C) = f (B),    f (B) $\displaystyle \oplus$ f (C) = f (A).

Какие рассуждения остается провести, чтобы решить задачу про амеб?

ВверхВниз   Решение


Докажите, что на рёбрах связного графа можно так расставить стрелки, чтобы из некоторой вершины можно было добраться по стрелкам до любой другой.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 30820  (#042)

Тема:   [ Ориентированные графы ]
Сложность: 3
Классы: 7,8

В некоторой стране есть столица и еще 100 городов. Некоторые города (в том числе и столица) соединены дорогами с односторонним движением. Из каждого нестоличного города выходит 20 дорог, и в каждый такой город входит 21 дорога. Докажите, что в столицу нельзя проехать ни из одного города.

Прислать комментарий     Решение

Задача 30821  (#043)

Темы:   [ Ориентированные графы ]
[ Обход графов ]
Сложность: 2+
Классы: 7,8

В некотором государстве каждый город соединён с каждым дорогой. Сумасшедший король хочет ввести на дорогах одностороннее движение так, чтобы выехав из любого города, в него нельзя было вернуться. Можно ли так сделать?

Прислать комментарий     Решение

Задача 30822  (#044)

Темы:   [ Ориентированные графы ]
[ Неопределено ]
Сложность: 3
Классы: 7,8

Докажите, что на рёбрах связного графа можно так расставить стрелки, чтобы из некоторой вершины можно было добраться по стрелкам до любой другой.

Прислать комментарий     Решение

Задача 30823  (#045)

Темы:   [ Ориентированные графы ]
[ Обход графов ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9

В связном графе степени всех вершин чётны. Докажите, что на рёбрах этого графа можно расставить стрелки так, чтобы выполнялись следующие условия:
  а) двигаясь по стрелкам, можно добраться от каждой вершины до любой другой;
  б) для каждой вершины числа входящих и выходящих рёбер равны.

Прислать комментарий     Решение

Задача 30824  (#046)

Темы:   [ Ориентированные графы ]
[ Обход графов ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
Докажите, что двигаясь по стрелкам, можно добраться от каждой вершины до любой другой.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .