Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Окружности радиуса x и y касаются окружности радиуса R, причем расстояние между точками касания равно a. Вычислите длину следующей общей касательной к первым двум окружностям:
а) внешней, если оба касания внешние или внутренние одновременно;
б) внутренней, если одно касание внутреннее, а другое внешнее.

Вниз   Решение


Восстановите треугольник ABC по прямым lb и lc, содержащим биссектрисы углов B и C, и основанию биссектрисы угла A – точке L1.

ВверхВниз   Решение


Дан параллелограмм ABCD. Окружность, проходящая через точку A, пересекает отрезки AB, AC и AD в точках P, Q и R соответственно. Докажите, что  AP . AB = AR . AD = AQ . AC.

ВверхВниз   Решение


Диагонали AC, BD трапеции ABCD пересекаются в точке P. Описанные окружности треугольников ABP, CDP пересекают прямую AD в точках X, Y. Точка M – середина XY. Докажите, что  BM = CM.

ВверхВниз   Решение


Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.

ВверхВниз   Решение


Существует ли треугольник, для сторон x, y, z которого выполнено соотношение  x³ + y³ + z³ = (x + y)(y + z)(z + x)?

ВверхВниз   Решение


Докажите, что любое аффинное преобразование можно представить в виде композиции двух растяжений и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.

ВверхВниз   Решение


Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14?

ВверхВниз   Решение


Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что  cos∠A + cos∠B = 1.

ВверхВниз   Решение


Вписанная окружность треугольника ABC касается стороны AB в точке C'. Вписанная окружность треугольника ACC' касается сторон AB и AC в точках C1, B1; Вписанная окружность треугольника BCC', касается сторон AB и BC в точках C2, A2. Докажите, что прямые B1C1, A2C2 и CC' пересекаются в одной точке.

ВверхВниз   Решение


Волк, Ёж, Чиж и Бобёр делили апельсин. Ежу досталось вдвое больше долек, чем Чижу, Чижу – впятеро меньше, чем Бобру, а Бобру – на 8 долек больше, чем Чижу. Найдите, сколько долек было в апельсине, если Волку досталась только кожура.

ВверхВниз   Решение


Решите задачу 5.85, а) с помощью теоремы Менелая.

ВверхВниз   Решение


a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

ВверхВниз   Решение


Что больше
  а) 2300 или 3200?
  б) 240 или 328?
  в) 544 или 453?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 83]      



Задача 30844  (#001)

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8,9

Какое число больше: 3111 или 1714?

Прислать комментарий     Решение

Задача 30845  (#002)

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 8,9

Что больше
  а) 2300 или 3200?
  б) 240 или 328?
  в) 544 или 453?

Прислать комментарий     Решение

Задача 30846  (#003)

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 8,9

Докажите, что  2100 + 3100 < 4100.

Прислать комментарий     Решение

Задача 30847  (#004)

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 8

Что больше: 792 или 891?

Прислать комментарий     Решение

Задача 30848  (#005)

Тема:   [ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 9,10

Докажите, что  479 < 2100 + 3100 < 480.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .