ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 180]      



Задача 31075  (#07)

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей?

Прислать комментарий     Решение

Задача 31076  (#08)

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 6,7,8

Могут ли степени вершин в графе быть равны:
  а) 8, 6, 5, 4, 4, 3, 2, 2?
  б) 7, 7, 6, 5, 4, 2, 2, 1?
  в) 6, 6, 6, 5, 5, 3, 2, 2?

Прислать комментарий     Решение

Задача 31077  (#09)

Темы:   [ Степень вершины ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 6,7,8

В графе каждая вершина – синяя или зелёная. При этом каждая синяя вершина связана с пятью синими и десятью зелёными, а каждая зелёная – с девятью синими и шестью зелёными. Каких вершин больше – синих или зелёных?

Прислать комментарий     Решение

Задача 31078  (#10)

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3
Классы: 6,7,8

В графе 100 вершин, причём степень каждой из них не меньше 50. Доказать, что граф связен.

Прислать комментарий     Решение

Задача 31079  (#11)

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Процессы и операции ]
Сложность: 3
Классы: 6,7,8

Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза.
Доказать, что карточки можно разложить так, чтобы все числа сверху были различны.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .