ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 32025  (#06)

Темы:   [ Поверхность круглых тел ]
[ Развертка помогает решить задачу ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 8,9,10

Из бумаги склеено цилиндрическое кольцо, ширина которого равна 1, а длина по окружности равна 4. Можно ли не разрывая сложить это кольцо так, чтобы получился квадрат площади 2?

Прислать комментарий     Решение


Задача 32026  (#07)

Темы:   [ Симметрия помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?

Прислать комментарий     Решение

Задача 32027  (#08)

Темы:   [ Малые шевеления ]
[ Целочисленные решетки (прочее) ]
[ Композиции поворотов ]
[ Поворот на $90^\circ$ ]
[ Процессы и операции ]
Сложность: 5-
Классы: 8,9,10

В каждый узел бесконечной клетчатой бумаги воткнута вертикальная булавка. Иголка длины l лежит на бумаге параллельно линиям сетки. При каких l иголку можно повернуть на 90°, не выводя из плоскости бумаги? Иголку разрешается как угодно двигать по плоскости, но так, чтобы она проходила между булавками; толщиной булавок и иголки пренебречь.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .