ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 13 км/ч, а вторую половину пути проехал со скоростью 78 км/ч, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста, если известно, что она больше 48 км/ч. Ответ дайте в км/ч. Куб размером 10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером 1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4. Три пирата нашли клад, состоящий из 240 золотых слитков общей стоимостью 360 долларов. Стоимость каждого слитка известна и выражается целым числом долларов. Может ли оказаться так, что добычу нельзя разделить между пиратами поровну, не переплавляя слитки?
В треугольнике ABC угол C равен 90o , AC = 5 , sin A =
В треугольнике ABC угол C равен 90o , AC = 12 , sin A = Будем называть "размером" прямоугольного параллелепипеда сумму трёх его
измерений – длины, ширины и высоты.
Внутрь квадрата с координатами левого нижнего угла (0, 0) и координатами
правого верхнего угла (100, 100) поместили N квадратиков, стороны которых
параллельны осям координат и имеют длину 5. Никакие два квадратика не
имеют общих точек. Необходимо найти кратчайший путь из точки (0, 0) в точку
(100, 100), который бы не пересекал ни одного из этих N квадратиков.
На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю? Дан куб 4×4×4. Расставьте в нем 16 ладей так, чтобы они не били друг друга. |
Страница: 1 2 >> [Всего задач: 8]
На некотором острове 15 государств. У каждого из них хотя бы одно соседнее государство дружественное. Докажите, что найдётся государство, у которого чётное число дружественных соседей. (Два государства называются соседними, если у них имеется целый кусок общей границы.)
Из квадратного листа бумаги в клетку, содержащего целое число клеток, вырезали квадрат, содержащий целое число клеток так, что осталось 124 клетки. Сколько клеток мог содержать первоначальный лист бумаги?
Можно ли на плоскости нарисовать 12 окружностей так, чтобы каждая касалась ровно пяти других?
В таблице 10×10 по порядку расставлены числа от 0 до 99 (в первой строке – от 0 до 9, во второй – от 10 до 19 и т.д.). Затем перед каждым из чисел поставлен знак "+" или "–" так, что в каждой строке и каждом столбце оказалось по пять знаков "+" и пять знаков "–". Чему может быть равна сумма всех чисел таблицы с учетом расставленных знаков?
Дан куб 4×4×4. Расставьте в нем 16 ладей так, чтобы они не били друг друга.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке