ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 188]      



Задача 104000

Темы:   [ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 7,8,9

Очень скучно смотреть на черно-белый циферблат, поэтому Клайв ровно в полдень закрасил число 12 красным цветом и решил через каждые 57 часов закрашивать текущий час в красный цвет.
  а) Сколько чисел на циферблате окажутся покрашенными?
  б) Сколько окажется красных чисел, если Клайв будет красить их каждый 2005-й час?

Прислать комментарий     Решение

Задача 32787

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Прислать комментарий     Решение


Задача 21979

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8

а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле?
б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле?

Прислать комментарий     Решение

Задача 30303

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 6,7

На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?

Прислать комментарий     Решение

Задача 32781

Тема:   [ Задачи на движение ]
Сложность: 3
Классы: 7,8,9

Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч.
Каким стало расстояние между ними?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .