|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.
Остроугольный равнобедренный треугольник ABC (AB = AC) вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC. Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет а) 100; б) 99; в) 98? |
Страница: 1 2 >> [Всего задач: 7]
б) Как определить фальшивую монету за три взвешивания, если монет 27?
б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)
а) 100; б) 99; в) 98?
Страница: 1 2 >> [Всего задач: 7] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|