Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга?

Вниз   Решение


На сторонах AB, BC и CD параллелограмма ABCD взяты точки K, L и M соответственно, делящие эти стороны в одинаковых отношениях. Пусть b, c, d — прямые, проходящие через B, C, D параллельно прямым KL, KM, ML соответственно. Докажите, что прямые b, c, d проходят через одну точку.

ВверхВниз   Решение


a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

ВверхВниз   Решение


Автор: Фольклор

Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?

ВверхВниз   Решение


Таня вырезала из клетчатой бумаги треугольник, изображённый на рисунке. Через некоторое время линии сетки выцвели. Сможет ли Таня их восстановить, не пользуясь никакими инструментами, а только перегибая треугольник? (Длины сторон треугольника Таня помнит.)

ВверхВниз   Решение


Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 32836  (#01)

Темы:   [ Неравенство треугольника (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3-
Классы: 7,8,9

В Старой Калитве живет 50 школьников, а в Средних Болтаях — 100 школьников. Где нужно построить школу, чтобы сумма расстояний, проходимых всеми школьниками, была наименьшей?
Прислать комментарий     Решение


Задача 32837  (#02)

Темы:   [ Неравенство треугольника (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 7,8,9

В Москве живет 2000 скалолазов, в Санкт-Петербурге и Красноярске — по 500, в Екатеринбурге — 200, а остальные 100 рассеяны по территории России. Где нужно устроить чемпионат России по скалолазанию, чтобы транспортные расходы участников были минимальны?
Прислать комментарий     Решение


Задача 32838  (#03)

Тема:   [ Задачи на движение ]
Сложность: 2
Классы: 7,8

Вадим и Лёша спускались с горы. Вадим шёл пешком, а Лёша съезжал на лыжах в семь раз быстрее Вадима. На полпути Лёша упал, сломал лыжи и ногу и пошёл в два раза медленней Вадима. Кто первым спустится с горы?

Прислать комментарий     Решение

Задача 32839  (#04)

Тема:   [ Задачи на движение ]
Сложность: 4-
Классы: 7,8,9

Из посёлка Морозки ведет прямая дорога, в стороне от неё, на поле, расположена водокачка. Путнику нужно попасть из Морозок к водокачке. По дороге путник идет со скоростью 4 км/ч, а по полю – 3 км/ч. Как ему следует выбрать маршрут, чтобы дойти быстрее всего?

Прислать комментарий     Решение

Задача 32840  (#05)

Тема:   [ Соображения непрерывности ]
Сложность: 3+
Классы: 7,8,9

Выйдя на маршрут в 4 часа утра, альпинист Джеф Лоу к вечеру достиг пика "Свободная Корея". Переночевав на вершине, на следующий день он вышел в то же время и быстро спустился обратно по пути подъема. Докажите, что на маршруте есть такая точка, которую Лоу во время спуска и во время подъема проходил в одно и то же время суток.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .