ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли расположить на плоскости
  а) 4 точки так, чтобы каждая из них была соединена отрезками с тремя другими (без пересечений)?
  б) 6 точек и соединить их непересекающимися отрезками так, чтобы из каждой точки выходило ровно 4 отрезка?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 32986

Темы:   [ Признаки делимости (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Произведения и факториалы ]
Сложность: 2+
Классы: 7,8,9

Найдите самое маленькое k, при котором k! делится на 2040.

Прислать комментарий     Решение

Задача 32989

Темы:   [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Разложение на множители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что  1 + 277 + 377 + ... + 199677  делится на 1997.

Прислать комментарий     Решение

Задача 32991

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 8

Можно ли семь телефонов соединить проводами так, чтобы каждый телефон был соединён ровно с тремя?

Прислать комментарий     Решение

Задача 32992

Темы:   [ Планарные графы. Формула Эйлера ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
[ Основные свойства и определения правильных многогранников ]
[ Проектирование помогает решить задачу ]
Сложность: 2+
Классы: 8

Можно ли расположить на плоскости
  а) 4 точки так, чтобы каждая из них была соединена отрезками с тремя другими (без пересечений)?
  б) 6 точек и соединить их непересекающимися отрезками так, чтобы из каждой точки выходило ровно 4 отрезка?

Прислать комментарий     Решение

Задача 32993

Темы:   [ Обход графов ]
[ Степень вершины ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 8

Гуляя по Кенигсбергу, Леонард Эйлер захотел обойти город, пройдя по каждому мосту ровно один раз (см. рис.). Как ему это сделать?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .