ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые любого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что любые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

   Решение

Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 7526]      



Задача 116514

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Касающиеся сферы ]
[ Неопределено ]
Сложность: 2+
Классы: 10,11

Три сферы попарно касаются внешним образом, а также касаются некоторой плоскости в вершинах прямоугольного треугольника с катетом 1 и противолежащим углом 30°. Найдите радиусы сфер.

Прислать комментарий     Решение

Задача 34840

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 7,8

За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые любого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что любые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.
Прислать комментарий     Решение


Задача 34882

Тема:   [ Процессы и операции ]
Сложность: 2+

По окружности, сделанной из проволоки, двигаются бусинки с одинаковой угловой скоростью, некоторые - по часовой стрелке, некоторые - против. При столкновении две бусинки разлетаются в разные стороны с прежними скоростями. Докажите, что в некоторый момент начальное расположение бусинок повторится.
Прислать комментарий     Решение


Задача 34891

Тема:   [ Подсчет двумя способами ]
Сложность: 2+

В квадрате 2000*2000 расставлены числа так, что в любом квадрате 2*2 сумма левого верхнего числа и правого нижнего числа равна сумме левого нижнего числа и правого верхнего числа. Докажите, что сумма чисел, стоящих в левом верхнем и правом нижнем углах квадрата 2000*2000, равна сумме чисел, стоящих в двух других углах.
Прислать комментарий     Решение


Задача 34897

Тема:   [ Вспомогательная раскраска ]
Сложность: 2+

Назовем крокодилом шахматную фигуру, ход которой заключается в прыжке на m клеток по вертикали или по горизонтали, и потом на n клеток в перпендикулярном направлении. Докажите что для любых m и n можно так раскрасить бесконечную клетчатую доску в 2 цвета (для каждых конкретных m и n своя раскраска), что всегда 2 клетки, соединенные одним ходом крокодила, будут покрашены в разные цвета.
Прислать комментарий     Решение


Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .