ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какую наименьшую сумму цифр может иметь число вида  3n² + n + 1  при натуральном n?

   Решение

Задачи

Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 7526]      



Задача 34851

Темы:   [ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Ориентированные графы ]
Сложность: 3
Классы: 7,8,9

В дискуссии приняли участие 15 депутатов. Каждый из них в своем выступлении раскритиковал ровно k из оставшихся 14 депутатов.
При каком наименьшем k можно утверждать, что найдутся два депутата, которые раскритиковали друг друга?

Прислать комментарий     Решение

Задача 34854

Темы:   [ Принцип Дирихле (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3
Классы: 7,8,9

В последовательности цифр 1234096... каждая цифра, начиная с пятой, равна последней цифре суммы предыдущих четырёх цифр.
Встретятся ли в этой последовательности подряд четыре цифры 8123?

Прислать комментарий     Решение

Задача 34872

Тема:   [ Непрерывные функции (общие свойства) ]
Сложность: 3
Классы: 9,10

О функции  f(x), заданной на всей вещественной прямой, известно, что при любом  a > 1  функция  f(x) + f(ax)  непрерывна на всей прямой.
Докажите, что  f(x) также непрерывна на всей прямой.

Прислать комментарий     Решение

Задача 34877

Темы:   [ Геометрические неравенства (прочее) ]
[ Разрезания на параллелограммы ]
Сложность: 3
Классы: 7,8,9

Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону. Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
Прислать комментарий     Решение


Задача 34888

Темы:   [ Уравнения в целых числах ]
[ Десятичная система счисления ]
[ Разложение на множители ]
[ Четность и нечетность ]
Сложность: 3

Какую наименьшую сумму цифр может иметь число вида  3n² + n + 1  при натуральном n?

Прислать комментарий     Решение

Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .