ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) На отрезке  [0, 1]  задано такое множество M, являющееся объединением нескольких отрезков, что расстояние между любыми двумя точками из M не равно 1/10. Докажите, что сумма длин отрезков, составляющих M, не больше ½.

б) Верно ли это же утверждение, если заменить 1/10 на ⅕?

   Решение

Задачи

Страница: << 164 165 166 167 168 169 170 >> [Всего задач: 7526]      



Задача 34921

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3

а) На отрезке  [0, 1]  задано такое множество M, являющееся объединением нескольких отрезков, что расстояние между любыми двумя точками из M не равно 1/10. Докажите, что сумма длин отрезков, составляющих M, не больше ½.

б) Верно ли это же утверждение, если заменить 1/10 на ⅕?

Прислать комментарий     Решение

Задача 34922

Темы:   [ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Обыкновенные дроби ]
Сложность: 3

Пусть p – простое число, большее 2, а  m/n = 1 + ½ + ⅓ + ... + 1/p–1.  Докажите, что m делится на p.

Прислать комментарий     Решение

Задача 34924

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3

На шахматной доске стоит фишка. Двое по очереди передвигают фишку на соседнюю по стороне клетку. При этом запрещается ставить фишку на поле, где она уже побывала. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Задача 34929

Тема:   [ Арифметическая прогрессия ]
Сложность: 3

Натуральный ряд разбит на n арифметических прогрессий (каждое натуральное число принадлежит ровно одной из этих n прогрессий). Пусть d1, d2, ..., dn – разности этих прогрессий. Докажите, что   1/d1 + 1/d2 + ... + 1/dn = 1.

Прислать комментарий     Решение

Задача 34931

Темы:   [ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
[ Средние величины ]
Сложность: 3
Классы: 8,9,10

В столовой предложено на выбор шесть блюд. Каждый день Вася берёт некоторый набор блюд (возможно, не берет ни одного блюда), причём этот набор блюд должен быть отличен от всех наборов, которые он брал в предыдущие дни. Какое наибольшее количество дней Вася сможет питаться по таким правилам и какое количество блюд он в среднем при этом будет съедать за день?

Прислать комментарий     Решение

Страница: << 164 165 166 167 168 169 170 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .