Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n
(n чётно). Некоторые из клеток вырезаются. Одна из сторон трафарета помечена. При наложении этого трафарета на чистый лист бумаги четырьмя возможными способами (помеченной стороной вверх, вправо, вниз, влево) его вырезы полностью покрывают всю площадь квадрата, причём каждая клетка оказывается под вырезом ровно один раз. Буквы сообщения, имеющего длину n², последовательно вписываются в вырезы трафарета, сначала наложенного на чистый лист бумаги помеченной стороной вверх. После заполнения всех вырезов трафарета буквами сообщения трафарет располагается в следующем положении и т. д. После снятия трафарета на листе бумаги оказывается зашифрованное сообщение.
Найдите число различных ключей для произвольного чётного числа n.

Вниз   Решение


а) Есть 10 монет. Известно, что одна из них фальшивая (по весу тяжелее настоящих). Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?
    б) Как определить фальшивую монету за три взвешивания, если монет 27?

ВверхВниз   Решение


Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.

ВверхВниз   Решение


Какие остатки могут получиться при делении  n³ + 3  на  n + 1  при натуральном  n > 2?

Вверх   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 7526]      



Задача 34938

Темы:   [ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 2+

Какие остатки могут получиться при делении  n³ + 3  на  n + 1  при натуральном  n > 2?

Прислать комментарий     Решение

Задача 34941

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Пусть b1, b2, ..., b7 – это целые числа a1, a2, ..., a7, взятые в некотором другом порядке. Докажите, что число  (a1b1)(a2b2)...(a7b7)  чётно.

Прислать комментарий     Решение

Задача 34944

Темы:   [ Арифметика остатков (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что квадрат нечётного числа дает остаток 1 при делении на 8.

Прислать комментарий     Решение

Задача 34945

Тема:   [ Взвешивания ]
Сложность: 2+

Дано 27 монет, из которых одна фальшивая, причём фальшивая монета легче настоящей.
Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?

Прислать комментарий     Решение

Задача 34946

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8

Существует ли 25-звенная ломаная, пересекающая каждое свое звено ровно три раза?

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .