ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли из последовательности 1, 1/2, 1/3, ... выбрать (сохраняя порядок) сто чисел, из которых каждое, начиная с третьего, равно разности двух предыдущих?

   Решение

Задачи

Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 7526]      



Задача 35221

Тема:   [ Алгебра и арифметика (прочее) ]
Сложность: 2+
Классы: 8,9

Можно ли из последовательности 1, 1/2, 1/3, ... выбрать (сохраняя порядок) сто чисел, из которых каждое, начиная с третьего, равно разности двух предыдущих?
Прислать комментарий     Решение


Задача 35339

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Центральная симметрия ]
[ Движение помогает решить задачу ]
Сложность: 2+
Классы: 8,9,10

На планете Тау Кита суша занимает больше половины всей площади. Доказать, что таукитяне могут прорыть через центр планеты шахту, соединяющую сушу с сушей.
Прислать комментарий     Решение


Задача 35357

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
Сложность: 2+
Классы: 7,8

Какое максимальное количество фигурок 2*2*1 можно уложить в куб 3*3*3?
Прислать комментарий     Решение


Задача 35390

Темы:   [ Покрытия ]
[ Площадь (прочее) ]
Сложность: 2+
Классы: 9,10

На стол положили несколько одинаковых листов бумаги прямоугольной формы. Оказалось, что верхний лист покрывает больше половины площади каждого из остальных листов. Можно ли в таком случае воткнуть булавку так, чтобы она проколола все прямоугольники?
Прислать комментарий     Решение


Задача 35433

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 5,6,7

Можно ли в квадрате 10*10 расставить 12 кораблей 1*4 (для игры типа "морской бой") так, чтобы корабли не соприкасались друг с другом (даже вершинами)?
Прислать комментарий     Решение


Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .