ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

(Продолжение задачи 32796)
  Стоя в углу, Клайв разобрал свои наручные часы, чтобы посмотреть, как они устроены. Собирая их обратно, он произвольно надел часовую и минутную стрелки. Сможет ли он так повернуть циферблат, чтобы хоть раз в сутки часы показывали правильное время (часы при этом еще не заведены)?

Вниз   Решение


На стол положили несколько одинаковых листов бумаги прямоугольной формы. Оказалось, что верхний лист покрывает больше половины площади каждого из остальных листов. Можно ли в таком случае воткнуть булавку так, чтобы она проколола все прямоугольники?

Вверх   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 810]      



Задача 35357

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
Сложность: 2+
Классы: 7,8

Какое максимальное количество фигурок 2*2*1 можно уложить в куб 3*3*3?
Прислать комментарий     Решение


Задача 35390

Темы:   [ Покрытия ]
[ Площадь (прочее) ]
Сложность: 2+
Классы: 9,10

На стол положили несколько одинаковых листов бумаги прямоугольной формы. Оказалось, что верхний лист покрывает больше половины площади каждого из остальных листов. Можно ли в таком случае воткнуть булавку так, чтобы она проколола все прямоугольники?
Прислать комментарий     Решение


Задача 35433

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 5,6,7

Можно ли в квадрате 10*10 расставить 12 кораблей 1*4 (для игры типа "морской бой") так, чтобы корабли не соприкасались друг с другом (даже вершинами)?
Прислать комментарий     Решение


Задача 35464

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9

Докажите, что сумма $\frac {1}{\sqrt {1} + \sqrt {2}} + \frac {1}{\sqrt {2} + \sqrt {3}} + \dots + \frac {1}{\sqrt {99} + \sqrt {100}}$ является целым числом.
Прислать комментарий     Решение


Задача 35469

Темы:   [ Последовательности (прочее) ]
[ Тождественные преобразования ]
Сложность: 2+
Классы: 7,8,9

Найдите наибольший член последовательности $x_n = \frac{n-1}{n^2+1}$.
Прислать комментарий     Решение


Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .