ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На шахматной доске расставлены 8 ладей так, что они не бьют друг друга. |
Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 644]
B cтаде 101 корова. Если увести любую одну, то оставшихся можно разделить на два стада по 50 коров в каждом, так что суммарный вес коров первого стада равен суммарному весу коров другого стада. Известно, что каждая корова весит целое число килограммов. Докажите, что все коровы весят одинаково.
На шахматной доске расставлены 8 ладей так, что они не бьют друг друга.
Верно ли утверждение: "Если две стороны и три угла одного треугольника равны двум сторонам и трём углам другого треугольника, то такие треугольники равны"?
На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?
В таблицу 8×8 вписаны все целые числа от 1 до 64. Доказать, что при этом найдутся два соседних числа, разность между которыми не меньше 5. (Соседними называются числа, стоящие в клетках, имеющих общую сторону.)
Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 644] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|