Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Из десятизначного числа 2946835107 вычеркнули 5 цифр. Какое наибольшее число могло в результате этого получиться?

Вниз   Решение


Пусть  ka ≡ kb (mod kn).  Тогда  a ≡ b (mod n).

ВверхВниз   Решение


Кусок сыра имеет форму кубика 3×3×3, из которого вырезан центральный кубик. Мышь начинает грызть этот кусок сыра. Сначала она съедает некоторый кубик 1×1×1. После того, как мышь съедает очередной кубик 1×1×1, она приступает к съедению одного из соседних (по грани) кубиков с только что съеденным. Сможет ли мышь съесть весь кусок сыра?

ВверхВниз   Решение


Суммы углов при вершинах A, C, E и B, D, F выпуклого шестиугольника ABCDEF с равными сторонами равны. Докажите, что противоположные стороны этого шестиугольника параллельны.

ВверхВниз   Решение


Даны 20 различных натуральных чисел, меньших 70. Докажите, что среди их попарных разностей найдутся четыре одинаковых.

ВверхВниз   Решение


Группа туристов должна была прибыть на вокзал в 5 часов. К этому времени с турбазы за ними должен был прийти автобус. Однако, прибыв на вокзал в 3:10, туристы пошли пешком на турбазу. Встретив на дороге автобус, они сели в него и прибыли на турбазу на 20 минут раньше предусмотренного времени. С какой скоростью шли туристы до встречи с автобусом, если скорость автобуса 60 км/ч?

ВверхВниз   Решение


В треугольнике ABC угол A равен  120o. Докажите, что из отрезков длиной a, b, b + c можно составить треугольник.

ВверхВниз   Решение


Даны две окружности, одна из которых лежит внутри другой. Из произвольной точки C внешней окружности проведены касательные к внутренней, вторично пересекающие внешнюю в точках A и B. Найдите геометрическое место центров вписанных окружностей треугольников ABC.

ВверхВниз   Решение


Игра с 25-ю монетами. В ряд лежат 25 монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать.

ВверхВниз   Решение


Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

ВверхВниз   Решение


Доказать, что n-е простое число больше 3n при  n > 12.

ВверхВниз   Решение


Две одинаковые шестерёнки имеют по 92 зубца. Их совместили и спилили одновременно 10 пар зубцов. Доказать, что одну шестерёнку можно повернуть относительно другой так, что в местах сломанных зубцов одной шестерёнки окажутся целые зубцы второй шестерёнки.

ВверхВниз   Решение


а) Докажите равенство  

б) Вычислите суммы  

ВверхВниз   Решение


Доказать, что число  29 + 299  делится на 100.

ВверхВниз   Решение


Андрей Михайлович выписал на доску все возможные последовательности длины $2022$, состоящие из 1011 нулей и 1011 единиц. Назовём две последовательности совместимыми, если они совпадают ровно в 4 позициях. Докажите, что Андрей Михайлович может разбить все последовательности на 20 групп так, чтобы никакие две совместимые последовательности не попали в одну группу.

ВверхВниз   Решение


Фигура на плоскости имеет ровно две оси симметрии. Найдите угол между этими осями.

Вверх   Решение

Задачи

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 7526]      



Задача 35466

Темы:   [ Последовательности (прочее) ]
[ Доказательство от противного ]
Сложность: 3-
Классы: 7,8,9

Даны 20 различных натуральных чисел, меньших 70. Докажите, что среди их попарных разностей найдутся четыре одинаковых.
Прислать комментарий     Решение


Задача 35480

Темы:   [ Системы точек ]
[ Проекция на прямую (прочее) ]
Сложность: 3-
Классы: 8,9

На плоскости дано 300 точек, никакие 3 которых не лежат на одной прямой. Докажите, что существует 100 попарно не пересекающихся треугольников с вершинами в этих точках.
Прислать комментарий     Решение


Задача 35510

Темы:   [ Делимость чисел. Общие свойства ]
[ Линейная и полилинейная алгебра ]
Сложность: 3-
Классы: 7,8,9

Известно, что выражение  14x + 13y  делится на 11 при некоторых целых x и y. Докажите, что  19x + 9y  также делится на 11 при таких x и y.

Прислать комментарий     Решение

Задача 35545

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 3-
Классы: 8,9

Фигура на плоскости имеет ровно две оси симметрии. Найдите угол между этими осями.

Прислать комментарий     Решение

Задача 35582

Темы:   [ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 7,8,9

Какое наименьшее натуральное число не является делителем 50!?

Прислать комментарий     Решение

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .