|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Классы:
|
|||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место. Докажите, что для каждого x такого, что sin x Докажите, что если для чисел p1, p2, q1 и q2 выполнено неравенство
(q1 – q2)² + (p1 – p2)(p1q2 – p2q1) < 0, то квадратные трёхчлены Диагонали вписанного четырёхугольника ABCD пересекаются в точке M, ∠AMB = 60°. На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL. Прямая KL пересекает описанную около ABCD окружность в точках P и Q. Докажите, что PK = LQ. |
Страница: << 1 2 3 [Всего задач: 12]
Диагонали вписанного четырёхугольника ABCD пересекаются в точке M, ∠AMB = 60°. На сторонах AD и BC во внешнюю сторону построены равносторонние треугольники ADK и BCL. Прямая KL пересекает описанную около ABCD окружность в точках P и Q. Докажите, что PK = LQ.
Длина каждой стороны и каждой не главной диагонали выпуклого шестиугольника не превосходит 1. Докажите, что в этом шестиугольнике найдется главная диагональ, длина которой не превосходит
Страница: << 1 2 3 [Всего задач: 12] |
||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|