ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

ABC — секущая, A — внешняя точка окружности, угловая величина дуги BD равна 42o, а угловая величина дуги BDC равна 220o. Найдите угол ABD.

   Решение

Задачи

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 7526]      



Задача 52550

Темы:   [ Метод ГМТ ]
[ Геометрическое место точек, равноудаленных от данной прямой ]
Сложность: 3-
Классы: 8,9

Постройте окружность данного радиуса, проходящую через данную точку и касающуюся данной прямой.

Прислать комментарий     Решение


Задача 52563

Темы:   [ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3-
Классы: 8,9

ABC — секущая, A — внешняя точка окружности, угловая величина дуги BD равна 42o, а угловая величина дуги BDC равна 220o. Найдите угол ABD.

Прислать комментарий     Решение


Задача 52571

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3-
Классы: 8,9

Докажите, что всякая трапеция, вписанная в окружность, — равнобедренная.

Прислать комментарий     Решение


Задача 52572

Темы:   [ Круг, сектор, сегмент и проч. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный угол равен половине центрального ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3-
Классы: 8,9

В круговой сегмент AMB вписана трапеция ACDB, у которой AC = CD и $ \angle$CAB = 51o20'. Найдите угловую величину дуги AMB.

Прислать комментарий     Решение


Задача 52576

Темы:   [ Метод ГМТ ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3-
Классы: 8,9

Постройте прямоугольный треугольник по гипотенузе и высоте, опущенной из вершины прямого угла на гипотенузу.

Прислать комментарий     Решение

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .