ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°. Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD. Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.
На хорде AB окружности K с центром в точке O взята точка C. D —
вторая точка пересечения окружности K с окружностью, описанной около
Выбрать 100 чисел, удовлетворяющих условиям x1 = 1, 0 ≤ x1 ≤ 2x1, 0 ≤ x3 ≤ 2x2, ..., 0 ≤ x99 ≤ 2x98, 0 ≤ x100 ≤ 2x99, так, чтобы выражение Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.
Докажите, что при повороте окружность переходит в окружность.
На шахматной доске 20×20 стоят 10 ладей и один король. Король не стоит под шахом и идёт из левого угла в правый верхний по диагонали. Ходят по очереди: сначала король, потом одна из ладей. Доказать, что при любом начальном расположении ладей и любом способе маневрирования ими король попадёт под шах. Сторона основания и высота правильной четырёхугольной пирамиды равны a . Найдите радиус вписанного шара. Внутри треугольника ABC взята точка M. Докажите, что угол BMC больше угла BAC. В треугольнике ABC проведены биссектрисы CF и AD. Найдите отношение SAFD : SABC, если AB : AC : BC = 21 : 28 : 20. В равнобедренном треугольнике ABC с основанием AC и углом
при вершине B, равным 36°, проведена биссектриса AD. |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 7526]
Отрезки AB и CD пересекаются под прямым углом и AC = AD. Докажите, что BC = BD и ∠ACB = ∠ADB.
Даны два треугольника: ABC и A1B1C1. Известно, что AB = A1B1, AC = A1C1, ∠A = ∠A1. На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что AK = A1K1, LC = L1C1. Докажите, что KL = K1L1 и AL = A1L1.
В равнобедренном треугольнике ABC с основанием AC и углом
при вершине B, равным 36°, проведена биссектриса AD.
Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
Высоты треугольника ABC, проведённые из вершин A и C, пересекаются в точке M. Найдите ∠AMC, если ∠A = 70°, ∠C = 80°.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке