ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции.
Найдите отрезок этой прямой, заключённый внутри трапеции, если основания равны a и b.

   Решение

Задачи

Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 6702]      



Задача 53350

Темы:   [ Равные треугольники. Признаки равенства ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Докажите, что если две стороны и угол против меньшей из них одного треугольника соответственно равны двум сторонам и углу против меньшей из них другого треугольника, то треугольники могут быть как равными, так и не равными.

Прислать комментарий     Решение

Задача 53351

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3
Классы: 8,9

Докажите равенство треугольников по стороне и медианам, проведённым к двум другим сторонам.

Прислать комментарий     Решение

Задача 53380

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Ломаные ]
Сложность: 3
Классы: 7,8,9

Найдите сумму углов при вершинах самопересекающейся пятиконечной звезды.

Прислать комментарий     Решение

Задача 53382

Темы:   [ Трапеции (прочее) ]
[ Подобные фигуры ]
[ Средние величины ]
Сложность: 3
Классы: 8,9

Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции.
Найдите отрезок этой прямой, заключённый внутри трапеции, если основания равны a и b.

Прислать комментарий     Решение

Задача 53392

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что  CB = BE.

Прислать комментарий     Решение

Страница: << 127 128 129 130 131 132 133 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .