ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность. Решение |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 7526]
В равнобедренном треугольнике ABC с основанием AC, равным
37, внешний угол при вершине B равен 60°.
ABC – равнобедренный треугольник с основанием AC, CD – биссектриса угла C, ∠ADC = 150°. Найдите ∠B.
Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.
На плоскости расположены четыре прямые (см. рисунок). Известны углы между некоторыми из них: α = 110°, β = 60°, γ = 80°.
На сторонах BC и B1C1 равных треугольников ABC и A1B1C1 взяты соответственно точки M и M1,
причём BM : MC = B1M1 : M1C1.
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 7526] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|