ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.

Вниз   Решение


На плоскости расположены четыре прямые (см. рисунок). Известны углы между некоторыми из них:  α = 110°,  β = 60°,  γ = 80°.
Найдите углы между остальными парами прямых.

Вверх   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 7526]      



Задача 53379

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 2+
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC, равным 37, внешний угол при вершине B равен 60°.
Найдите расстояние от вершины C до прямой AB.

Прислать комментарий     Решение

Задача 53383

Тема:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

ABC – равнобедренный треугольник с основанием AC, CD – биссектриса угла C,  ∠ADC = 150°.  Найдите ∠B.

Прислать комментарий     Решение

Задача 53388

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9

Величины углов при вершинах A, B, C треугольника ABC составляют арифметическую прогрессию с разностью π/7. Биссектрисы этого треугольника пересекаются в точке D. Точки A1, B1, C1 находятся на продолжениях отрезков DA, DB, DC за точки A, B, C соответственно, на одинаковом расстоянии от точки D. Докажите, что величины углов A1, B1, C1 также образуют арифметическую прогрессию. Найдите её разность.

Прислать комментарий     Решение

Задача 53395

Тема:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 2+
Классы: 8,9

На плоскости расположены четыре прямые (см. рисунок). Известны углы между некоторыми из них:  α = 110°,  β = 60°,  γ = 80°.
Найдите углы между остальными парами прямых.

Прислать комментарий     Решение

Задача 53396

Тема:   [ Равные треугольники. Признаки равенства ]
Сложность: 2+
Классы: 8,9

На сторонах BC и B1C1 равных треугольников ABC и A1B1C1 взяты соответственно точки M и M1, причём  BM : MC = B1M1 : M1C1.
Докажите, что  AM = A1M1.

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .