ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

Вниз   Решение


Докажите, что число людей, когда-либо живших на Земле и сделавших нечётное число рукопожатий, чётно.

ВверхВниз   Решение


Боковая сторона треугольника разделена на пять равных частей; через точки деления проведены прямые, параллельные основанию.
Найдите отрезки этих прямых, заключённые между боковыми сторонами, если основание равно 20.

ВверхВниз   Решение


В Тридевятом царстве лишь один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов – по 20. Докажите, что из столицы можно долететь в Дальний (возможно, с пересадками).

ВверхВниз   Решение


Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.

Вверх   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 7526]      



Задача 53551

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Площадь трапеции ]
Сложность: 2+
Классы: 8,9

Площадь равнобедренной трапеции равна 32. Котангенс угла между диагональю и основанием равен 2. Найдите высоту трапеции.

Прислать комментарий     Решение

Задача 53552

Темы:   [ Средняя линия треугольника ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.

Прислать комментарий     Решение

Задача 53566

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

Прислать комментарий     Решение


Задача 53567

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
Сложность: 2+
Классы: 8,9

Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Найдите угол AMB.

Прислать комментарий     Решение

Задача 53730

Темы:   [ Вневписанные окружности ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 8,9

Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .