Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 6702]
Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.
Найдите углы четырёхугольника ABCD, вершины которого расположены
на окружности, если ∠ABD = 74°, ∠DBC = 38°, ∠BDC = 65°.
Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
Найдите угол AMB.
Докажите, что прямая, проходящая через центры вневписанных окружностей треугольника ABC, касающихся сторон AB и AC, перпендикулярна прямой, проходящей через центр вписанной окружности и вершину A.
Через центр окружности, вписанной в трапецию, проведена прямая, параллельная основаниям.
Докажите, что отрезок этой прямой, заключённый между боковыми сторонами, равен четверти периметра трапеции.
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 6702]