ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли тетраэдр, у которого пары противоположных рёбер равны 3 и 3, 4 и 4, 5 и 5? Внутри параллелограмма ABCD отметили точку E так, что CD = CE. В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём MN : NP : PQ = 7 : 1 : 2. Найдите углы ромба. В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью? Докажите, что равные хорды удалены от центра окружности на равные расстояния. Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны. |
Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 6702]
Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны.
Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Две прямые пересекаются в точке A под углом, не равным 90o ; B и C — проекции точки M на эти прямые. Найдите угол между прямой BC и прямой, проходящей через середины отрезков AM и BC .
В треугольнике ABC проведены высоты AA1 и BB1. Найдите AC, если
Найдите радиус наименьшего круга, в котором можно разместить треугольник со сторонами 7, 9 и 12.
Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке