ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Докажите, что если у одного из них диагонали перпендикулярны, то и у другого тоже.

   Решение

Задачи

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 6702]      



Задача 53603

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 3
Классы: 8,9

Докажите, что диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов его противоположных сторон равны.

Прислать комментарий     Решение

Задача 53605

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Четырехугольник: вычисления, метрические соотношения. ]
[ ГМТ - прямая или отрезок ]
Сложность: 3
Классы: 8,9

Рассмотрим два различных четырёхугольника с соответственно равными сторонами.
Докажите, что если у одного из них диагонали перпендикулярны, то и у другого тоже.

Прислать комментарий     Решение

Задача 53627

Темы:   [ Вспомогательная окружность ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Две прямые пересекаются в точке A под углом, не равным 90o ; B и C — проекции точки M на эти прямые. Найдите угол между прямой BC и прямой, проходящей через середины отрезков AM и BC .
Прислать комментарий     Решение


Задача 53632

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены высоты AA1 и BB1. Найдите AC, если
  а)  AA1 = 4,  BB1 = 5,  BC = 6;
  б)  A1C = 8,  B1C = 5,  BB1 = 12.

Прислать комментарий     Решение

Задача 53633

Темы:   [ Теорема косинусов ]
[ Против большей стороны лежит больший угол ]
Сложность: 3
Классы: 8,9

Найдите радиус наименьшего круга, в котором можно разместить треугольник со сторонами 7, 9 и 12.

Прислать комментарий     Решение

Страница: << 136 137 138 139 140 141 142 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .