ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 7526]      



Задача 53915

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что хорды, удалённые от центра окружности на равные расстояния, равны.

Прислать комментарий     Решение

Задача 53918

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

Прислать комментарий     Решение

Задача 53922

Темы:   [ Диаметр, хорды и секущие ]
[ Пересекающиеся окружности ]
Сложность: 2+
Классы: 8,9

Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.

Прислать комментарий     Решение

Задача 53935

Темы:   [ Вспомогательные равные треугольники ]
[ Диаметр, основные свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Прислать комментарий     Решение

Задача 53958

Темы:   [ Признаки и свойства касательной ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .