Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В параллелограмме ABCD сторона  AB = 420.  На стороне BC взята точка E так, что  BE : EC = 5: 7,  и проведена прямая DE, пересекающая продолжение AB в точке F. Найдите BF.

Вниз   Решение


Найдите все простые числа вида  PP + 1  (P – натуральное), содержащие не более 19 цифр.

ВверхВниз   Решение


На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что  AC = BD,  2∠ACF = ∠ADB,  2∠CAF = ∠CDB.
Докажите, что  AD = CE.

ВверхВниз   Решение


Точка P , лежащая на большей из двух дуг AB окружности, соединена с серединой M меньшей дуги AB . Хорды PL и PM пересекают хорду AB соответственно в её середине K и в некоторой точке N . Сравните отрезки KL и MN .

ВверхВниз   Решение


В треугольнике ABC угол A в 2 раза больше угла B, AL – биссектриса треугольника. На луче AL отложен отрезок AK, равный CL.
Докажите, что  AK = CK.

ВверхВниз   Решение


Докажите, что если окружность и прямая (либо две окружности) касаются в точке M , отличной от точки O , то их образы при инверсии относительно окружности с центром O также касаются, а при инверсии с центром M окружность и прямая (две окружности) переходят в две параллельные прямые.

ВверхВниз   Решение


Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной a, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырёхугольника.

Вверх   Решение

Задачи

Страница: << 150 151 152 153 154 155 156 >> [Всего задач: 6702]      



Задача 54072

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Периметр треугольника ]
Сложность: 3
Классы: 8,9

Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной a, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырёхугольника.

Прислать комментарий     Решение

Задача 54073

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.

Прислать комментарий     Решение

Задача 54089

Темы:   [ Ромбы. Признаки и свойства ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Докажите, что четырёхугольники O1AO2B и AMBN – ромбы.

Прислать комментарий     Решение

Задача 54093

Темы:   [ Ромбы. Признаки и свойства ]
[ Построения ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.

Прислать комментарий     Решение

Задача 54095

Темы:   [ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3
Классы: 8,9

Докажите, что отрезок, соединяющий середины противоположных сторон параллелограмма, проходит через его центр.

Прислать комментарий     Решение

Страница: << 150 151 152 153 154 155 156 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .