Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

  В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
  Однажды Король провел такую реформу: каждый из N мэров городов стал снова мэром одного из N городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара соседних городов, обменявшихся мэрами.

Вниз   Решение


Докажите, что отрезок, соединяющий середины противоположных сторон параллелограмма, проходит через его центр.

ВверхВниз   Решение


Автор: Рукшин С.

На поверхности куба проведена замкнутая восьмизвенная ломаная, вершины которой совпадают с вершинами куба.
Какое наименьшее количество звеньев этой ломаной может совпасть с рёбрами куба?

ВверхВниз   Решение


Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.

ВверхВниз   Решение


С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.

ВверхВниз   Решение


На рёбрах NN1 и KN куба KLMNK1L1M1N1 отмечены точки P и Q , причём = , = 4 . Через точки M1 , P и Q проведена плоскость. Найдите расстояние от точки K до этой плоскости, если ребро куба равно 3

ВверхВниз   Решение


Три сферы, радиусы которых равны , 3 и 3, попарно касаются друг друга. Через центр P первой сферы проведена плоскость β так, что прямая, содержащая центры C и D второй и третьей сфер параллельна β и удалена от этой плоскости на расстояние 1. Найдите угол между проекциями прямых PC и PD на плоскость β и сравните его с arccos .

ВверхВниз   Решение


Пусть AE и CD – биссектрисы равнобедренного треугольника ABC  (AB = BC).  Докажите, что  ∠BED = 2∠AED.

ВверхВниз   Решение


Автор: Храмцов Д.

Ножки циркуля находятся в узлах бесконечного листа клетчатой бумаги, клетки которого – квадраты со стороной 1. Разрешается, не меняя раствора циркуля, поворотом его вокруг одной из ножек перемещать вторую ножку в другой узел на листе. Можно ли за несколько таких шагов поменять ножки циркуля местами?

ВверхВниз   Решение


Из точки O на плоскости выходят 4 луча, следующие друг за другом по часовой стрелке: OA, OB, OC и OD. Известно, что сумма углов AOB и COD равна 180°. Докажите, что биссектрисы углов AOC и BOD перпендикулярны.

ВверхВниз   Решение


Докажите, что три средние линии разбивают треугольник на четыре равных треугольника.

Вверх   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 6702]      



Задача 53918

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

Прислать комментарий     Решение

Задача 53922

Темы:   [ Диаметр, хорды и секущие ]
[ Пересекающиеся окружности ]
Сложность: 2+
Классы: 8,9

Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.

Прислать комментарий     Решение

Задача 53935

Темы:   [ Вспомогательные равные треугольники ]
[ Диаметр, основные свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Прислать комментарий     Решение

Задача 53958

Темы:   [ Признаки и свойства касательной ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.

Прислать комментарий     Решение

Задача 54120

Темы:   [ Средняя линия треугольника ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что три средние линии разбивают треугольник на четыре равных треугольника.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .