Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?

Вниз   Решение


В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

ВверхВниз   Решение


В равнобедренную трапецию ABCD  (BC || AD)  вписана окружность радиуса R, касающаяся основания AD в точке P и пересекающая отрезок BP в такой точке Q, что  PQ = 3BQ.  Найдите углы и площадь трапеции.

ВверхВниз   Решение


Автор: Фольклор

Даны два двузначных числа – X и Y. Известно, что X вдвое больше Y, одна цифра числа Y равна сумме, а другая – разности цифр числа X.
Найти эти числа.

ВверхВниз   Решение


Доказать: число делителей n не превосходит 2.

ВверхВниз   Решение


Имеются 13 гирь. Известно, что любые 12 из них можно так разложить на две чашки весов, по шесть на каждую, что наступит равновесие.
Докажите, что все гири имеют одну и ту же массу, если известно, что:
  а) масса каждой гири равна целому числу граммов;
  б) масса каждой гири равна рациональному числу граммов;
  в) масса каждой гири может быть равна любому действительному (неотрицательному) числу.

ВверхВниз   Решение


На высоте BD треугольника ABC взята такая точка E, что  ∠AEC = 90°.  Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.

ВверхВниз   Решение


На сторонах AD и CD параллелограмма ABCD с центром O отмечены такие точки P и Q соответственно, что  ∠AOP = ∠COQ = ∠ABC.
  а) Докажите, что  ∠ABP = ∠CBQ.
  б) Докажите, что прямые AQ и CP пересекаются на описанной окружности треугольника ABC.

ВверхВниз   Решение


С 1 сентября четыре школьника начали посещать кинотеатр. Первый бывал в нём каждый четвёртый день, второй – каждый пятый, третий – каждый шестой и четвёртый – каждый девятый. Когда второй раз все школьники встретятся в кинотеатре?

ВверхВниз   Решение


В треугольник вписан ромб со стороной m так, что одни угол у них общий, а противоположная вершина ромба лежит на стороне треугольника и делит эту сторону на отрезки, равные p и q. Найдите стороны треугольника.

ВверхВниз   Решение


Медианы AM и BE треугольника ABC пересекаются в точке O. Точки O, M, E, C лежат на одной окружности. Найдите AB, если BE = AM = 3.

ВверхВниз   Решение


Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 104084  (#1)

Тема:   [ Уравнения с модулями ]
Сложность: 2
Классы: 7,8,9

Решите уравнение: |x - 2005| + |2005 - x| = 2006.
Прислать комментарий     Решение


Задача 54173  (#2)

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Медиана, проведенная к гипотенузе ]
[ Ромбы. Признаки и свойства ]
[ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Боковая сторона трапеции равна одному основанию и вдвое меньше другого.
Докажите, что вторая боковая сторона перпендикулярна одной из диагоналей трапеции.

Прислать комментарий     Решение

Задача 104086  (#3)

Темы:   [ Текстовые задачи (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7,8

На вопрос о возрасте его детей математик ответил:
– У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок – 70 годам, а сейчас суммарный возраст детей – 14 лет.
Сколько лет каждому ребенку, если известно, что у всех членов семьи дни рождения в один и тот же день?

Прислать комментарий     Решение

Задача 108197  (#4)

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC провели биссектрисы углов A и C. Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.

Прислать комментарий     Решение

Задача 104088  (#5)

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9

Маша задумала натуральное число и нашла его остатки при делении на 3, 6 и 9. Сумма этих остатков оказалась равна 15.
Найдите остаток от деления задуманного числа на 18.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .