ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны два треугольника: ABC и A1B1C1. Известно, что AB = A1B1, AC = A1C1, ∠A = ∠A1. На сторонах AC и BC треугольника ABC взяты соответственно точки K и L, а на сторонах A1C1 и B1C1 треугольника A1B1C1 – точки K1 и L1 так, что AK = A1K1, LC = L1C1. Докажите, что KL = K1L1 и AL = A1L1. Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных чисел была положительна, а сумма любых 10 последовательных чисел была отрицательна? Вершина M правильного треугольника ABM со стороной a
расположена на стороне CD прямоугольника ABCD. В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный? Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как 2 : 1, считая от вершины. В каком отношении она делит боковые стороны? Найдите высоту и радиусы вписанной и описанной окружностей равностороннего треугольника со стороной a. |
Страница: << 130 131 132 133 134 135 136 >> [Всего задач: 7526]
Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b (a > b).
Найдите углы и стороны четырёхугольника с вершинами в серединах сторон равнобедренной трапеции, диагонали которой равны 10 и пересекаются под углом 40o.
В равнобедренном треугольнике ABC угол при вершине B равен 120°, а основание равно 8. Найдите боковые стороны.
Найдите высоту и радиусы вписанной и описанной окружностей равностороннего треугольника со стороной a.
Точка M расположена на стороне CD квадрата ABCD с центром O, причём CM : MD = 1 : 2.
Страница: << 130 131 132 133 134 135 136 >> [Всего задач: 7526]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке