ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Периметр параллелограмма равен 90, а острый угол равен 60$deg;. Диагональ параллелограмма делит его тупой угол на части в отношении  1 : 3.  Найдите стороны параллелограмма.

   Решение

Задачи

Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 7526]      



Задача 54247

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

Боковая сторона равнобедренной трапеции равна 41, высота равна 40 и средняя линия равна 45. Найдите основания.

Прислать комментарий     Решение

Задача 54249

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Перенос стороны, диагонали и т.п. ]
Сложность: 3-
Классы: 8,9

Докажите, что в прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований.

Прислать комментарий     Решение

Задача 54258

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3-
Классы: 8,9

В прямоугольном треугольнике медианы, проведённые из вершин острых углов, равны   и  .  Найдите гипотенузу треугольника.

Прислать комментарий     Решение

Задача 54264

Темы:   [ Признаки и свойства параллелограмма ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 8,9

Периметр параллелограмма равен 90, а острый угол равен 60$deg;. Диагональ параллелограмма делит его тупой угол на части в отношении  1 : 3.  Найдите стороны параллелограмма.

Прислать комментарий     Решение

Задача 54307

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике угол при вершине равен α, а площадь равна S. Найдите основание.

Прислать комментарий     Решение

Страница: << 132 133 134 135 136 137 138 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .