ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сторона треугольника равна 2$ \sqrt{7}$, а две другие стороны образуют угол в 30o и относятся как 1 : 2$ \sqrt{3}$. Найдите эти стороны.

   Решение

Задачи

Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 7526]      



Задача 54697

Темы:   [ Теорема косинусов ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 8,9

Одна из сторон треугольника вдвое больше другой, а угол между этими сторонами равен 60o. Докажите, что треугольник — прямоугольный.

Прислать комментарий     Решение


Задача 54698

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Сторона треугольника равна 2$ \sqrt{7}$, а две другие стороны образуют угол в 30o и относятся как 1 : 2$ \sqrt{3}$. Найдите эти стороны.

Прислать комментарий     Решение


Задача 54699

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.

Прислать комментарий     Решение


Задача 54701

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Одна из сторон треугольника равна 6, вторая сторона равна 2$ \sqrt{7}$, а противолежащий ей угол равен 60o. Найдите третью сторону треугольника.

Прислать комментарий     Решение


Задача 54719

Тема:   [ Теорема синусов ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC известно, что $ \angle$A = $ \alpha$, $ \angle$C = $ \beta$, AB = a; AD - биссектриса. Найдите BD.

Прислать комментарий     Решение


Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .