ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Точки M, N, K – середины рёбер соответственно AB, BC, DD1 параллелепипеда ABCDA1B1C1D1.
  а) Постройте сечение параллелепипеда плоскостью, проходящей через точки M, N, K.
  б) В каком отношении эта плоскость делит ребро CC1 и диагональ DB1?
  в) В каком отношении эта плоскость делит объём параллелепипеда?

Вниз   Решение


Пусть     Чему равны Pn и Qn?

ВверхВниз   Решение


В коридоре длиной 100 метров постелено 20 ковровых дорожек общей длины 1000 метров. Каково может быть наибольшее число незастеленных кусков (ширина дорожки равна ширине коридора)?

ВверхВниз   Решение


Позиционная система счисления. Докажите, что при q $ \geqslant$ 2 каждое натуральное число n может быть единственным образом представлено в виде

n = akqk + ak - 1qk - 1 +...+ a1q + a0,

где 0 $ \leqslant$ a0,..., ak < q

ВверхВниз   Решение


Число x таково, что число x + $ {\dfrac{1}{x}}$ — целое. Докажите, что при любом натуральном n число xn + $ {\frac{1}{x^n}}$ также является целым.

ВверхВниз   Решение


В треугольнике ABC известно, что $ \angle$A = $ \alpha$, $ \angle$C = $ \beta$, AB = a; AD - биссектриса. Найдите BD.

Вверх   Решение

Задачи

Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 6702]      



Задача 54699

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Одна из сторон параллелограмма равна 10, а диагонали равны 20 и 24. Найдите косинус острого угла между диагоналями.

Прислать комментарий     Решение


Задача 54701

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Одна из сторон треугольника равна 6, вторая сторона равна 2$ \sqrt{7}$, а противолежащий ей угол равен 60o. Найдите третью сторону треугольника.

Прислать комментарий     Решение


Задача 54719

Тема:   [ Теорема синусов ]
Сложность: 3-
Классы: 8,9

В треугольнике ABC известно, что $ \angle$A = $ \alpha$, $ \angle$C = $ \beta$, AB = a; AD - биссектриса. Найдите BD.

Прислать комментарий     Решение


Задача 54734

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На прямой выбраны три точки A, B и C, причём  AB = 3,  BC = 5.  Чему может быть равно AC?

Прислать комментарий     Решение

Задача 54735

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3-
Классы: 8,9

На прямой выбраны четыре точки A, B, C и D, причём  AB = 1,  BC = 2,  CD = 4.  Чему может быть равно AD?

Прислать комментарий     Решение

Страница: << 84 85 86 87 88 89 90 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .