ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите следующие формулы: an+1 – bn+1 = (a – b)(an + an–1b + ... + bn); a2n+1 + b2n+1 = (a + b)(a2n – a2n–1b + a2n–2b2 – ... + b2n). Натуральные числа x, y, z таковы, что x² + y² = z². Докажите, что хотя бы одно из этих чисел делится на 3. Докажите, что при центральной симметрии окружность переходит в окружность.
|
Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 6702]
Пусть M — середина отрезка AB, O — произвольная точка.
Докажите, что
Верно ли следующее утверждение: "Если четырёхугольник имеет ось симметрии, то это либо равнобедренная трапеция, либо прямоугольник, либо ромб"?
Существует ли фигура, не имеющая осей симметрии, но переходящая в себя при некотором повороте?
Докажите, что при центральной симметрии окружность переходит в окружность.
Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.
Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке