Версия для печати
Убрать все задачи
По окружности выписаны n чисел x1, x2, ..., xn, каждое из которых равно 1 или –1, причём сумма произведений соседних чисел равна нулю и вообще для каждого k = 1, 2, ..., n – 1 сумма n произведений чисел, отстоящих друг от друга на k мест, равна нулю
(то есть x1x2 + x2x3 + ... + xnx1 = 0,
x1x3 + x2x4 + ... + xnx2 = 0, x1x4 + x2x5 + ... + xnx3 = 0 и так далее; например, для n = 4 можно взять одно из чисел равным –1, а три других – равными 1).
а) Докажите, что n – квадрат целого числа.
б)* Существует ли такой набор чисел для n = 16?

Решение
В четырёхугольнике ABCD сторона AB равна диагонали AC и перпендикулярна стороне AD, а диагональ AC перпендикулярна стороне CD. На стороне AD взята такая точка K , что AC = AK. Биссектриса угла ADC пересекает BK в точке M. Найдите угол ACM.


Решение
В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.


Решение
Постройте прямоугольный треугольник по катету и гипотенузе.

Решение