ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В основании четырёхугольной пирамиды SABCD лежит ромб ABCD с тупым углом при вершине A . Высота ромба равна 2, точка пересечения его диагоналей является ортогональной проекцией вершины S на плоскость основания. Сфера радиуса 1 касается плоскостей всех граней пирамиды. Найдите объём пирамиды, если расстояние от центра сферы до прямой BD равно AB .

Вниз   Решение


Митя собирается согнуть квадратный лист бумаги ABCD. Митя называет сгиб красивым, если сторона AB пересекает сторону CD и четыре получившихся прямоугольных треугольника равны. Перед этим Ваня выбирает на листе случайную точку F. Найдите вероятность того, что Митя сможет сделать красивый сгиб, проходящий через точку F.

ВверхВниз   Решение


Постройте точки X и Y на сторонах AB и BC треугольника ABC так, что AX = BY и XY| AC.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 57230

Тема:   [ Треугольник (построения) ]
Сложность: 3
Классы: 8,9

Постройте точки X и Y на сторонах AB и BC треугольника ABC так, что AX = BY и XY| AC.
Прислать комментарий     Решение


Задача 57231

Тема:   [ Треугольник (построения) ]
Сложность: 3
Классы: 8,9

Постройте треугольник по сторонам a и b, если известно, что угол против одной из них в три раза больше угла против другой.
Прислать комментарий     Решение


Задача 57232

Тема:   [ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

Впишите в данный треугольник ABC прямоугольник PQRS (вершины R и Q лежат на сторонах AB и BCP и S — на стороне AC) так, чтобы его диагональ имела данную длину.
Прислать комментарий     Решение


Задача 57233

Тема:   [ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

Проведите через данную точку M прямую так, чтобы она отсекала от данного угла с вершиной A треугольник ABC данного периметра 2p.
Прислать комментарий     Решение


Задача 57234

Тема:   [ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

Постройте треугольник ABC по медиане mc и биссектрисе lc, если  $ \angle$C = 90o.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .