ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Найти множество точек пересечения всех пар перпендикулярных касательных к гиперболе.

Вниз   Решение


Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].

ВверхВниз   Решение


Постройте треугольник ABC по радиусу вписанной окружности r и (ненулевым) длинам отрезков AO и AH, где O — центр вписанной окружности, H — ортоцентр.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 57235

Тема:   [ Треугольник (построения) ]
Сложность: 5
Классы: 8,9

Дан треугольник ABC, причем AB < BC. Постройте на стороне AC точку D так, чтобы периметр треугольника ABD был равен длине стороны BC.
Прислать комментарий     Решение


Задача 57236

Тема:   [ Треугольник (построения) ]
Сложность: 5
Классы: 8,9

Постройте треугольник ABC по радиусу описанной окружности и биссектрисе угла A, если известно, что разность углов B и C равна  90o.
Прислать комментарий     Решение


Задача 57237

Тема:   [ Треугольник (построения) ]
Сложность: 5
Классы: 8,9

На стороне AB треугольника ABC дана точка P. Проведите через точку P прямую (отличную от AB), пересекающую лучи CA и CB в таких точках M и N, что AM = BN.
Прислать комментарий     Решение


Задача 57238

Тема:   [ Треугольник (построения) ]
Сложность: 6
Классы: 8,9

Постройте треугольник ABC по радиусу вписанной окружности r и (ненулевым) длинам отрезков AO и AH, где O — центр вписанной окружности, H — ортоцентр.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .