ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть E и F — середины сторон AB и CD четырехугольника
ABCD, K, L, M и N — середины отрезков AF, CE,
BF и DE. Докажите, что KLMN — параллелограмм.
Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если ВМ = 8 см, KC = 1 см и АВ > ВС. Найдите все пары целых чисел (x, y), для которых числа x³ + y и x + y³ делятся на x² + y². Постройте выпуклый четырехугольник, если даны
длины всех его сторон и одной средней линии (средней линией
четырехугольника называют отрезок, соединяющий середины противоположных
сторон).
|
Страница: << 1 2 [Всего задач: 10]
Даны три вершины вписанного и описанного
четырехугольника. Постройте его четвертую вершину.
Даны вершины A и C равнобедренной описанной
трапеции ABCD (AD| BC); известны также направления ее
оснований. Постройте вершины B и D.
На доске была начерчена трапеция ABCD (AD| BC)
и проведены перпендикуляр OK из точки O пересечения диагоналей на
основание AD и средняя линия EF. Затем трапецию стерли. Как
восстановить чертеж по сохранившимся отрезкам OK и EF?
Постройте выпуклый четырехугольник, если даны
длины всех его сторон и одной средней линии (средней линией
четырехугольника называют отрезок, соединяющий середины противоположных
сторон).
Постройте вписанный четырехугольник по четырем
сторонам (Брахмагупта).
Страница: << 1 2 [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке