ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Вписанная окружность касается стороны BC
треугольника ABC в точке K. Докажите, что площадь треугольника
равна
BK . KCctg( ABC - прямоугольный треугольник с прямым углом C. Докажите, что
c/r Квадратный трехчлен y = ax² + bx + c не имеет корней и а + b + c > 0. Найдите знак коэффициента с. Даны четыре окружности S1, S2, S3, S4. Пусть S1
и S2 пересекаются в точках A1 и A2, S2 и S3 —
в точках B1 и B2, S3 и S4 — в точках C1 и C2,
S4 и S1 — в точках D1 и D2 (рис.). Докажите, что
если точки A1, B1, C1, D1 лежат на одной окружности S
(или прямой), то и точки A2, B2, C2, D2
лежат на одной окружности (или прямой).
Докажите, что Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте? Докажите, что для прямоугольного треугольника
0, 4 < r/h < 0, 5, где h — высота, опущенная из вершины прямого угла.
|
Страница: 1 [Всего задач: 5]
ABC - прямоугольный треугольник с прямым углом C. Докажите, что
cn > an + bn при n > 2.
ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.
Докажите, что для прямоугольного треугольника
0, 4 < r/h < 0, 5, где h — высота, опущенная из вершины прямого угла.
ABC - прямоугольный треугольник с прямым углом C. Докажите, что
c/r
ABC - прямоугольный треугольник с прямым углом C. Докажите, что
ma2 + mb2 > 29r2.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке