Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Вписанная окружность касается стороны BC треугольника ABC в точке K. Докажите, что площадь треугольника равна  BK . KCctg($ \alpha$/2).

Вниз   Решение


ABC - прямоугольный треугольник с прямым углом C. Докажите, что  c/r $ \geq$ 2(1 + $ \sqrt{2}$).

ВверхВниз   Решение


Квадратный трехчлен  y = ax² + bx + c  не имеет корней и  а + b + c > 0.  Найдите знак коэффициента с.

ВверхВниз   Решение


Даны четыре окружности S1, S2, S3, S4. Пусть S1 и S2 пересекаются в точках A1 и A2, S2 и S3 — в точках B1 и B2, S3 и S4 — в точках C1 и C2, S4 и S1 — в точках D1 и D2 (рис.). Докажите, что если точки A1, B1, C1, D1 лежат на одной окружности S (или прямой), то и точки A2, B2, C2, D2 лежат на одной окружности (или прямой).


ВверхВниз   Решение


Докажите, что

\begin{multline*}
h_a=2(p-a)\cos(\beta /2)\cos(\gamma /2)/\cos(\alpha /2)=\\
=2(p-b)\sin(\beta /2)\cos(\gamma /2)/\sin(\alpha /2).
\end{multline*}


ВверхВниз   Решение


Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?

ВверхВниз   Решение


Докажите, что для прямоугольного треугольника 0, 4 < r/h < 0, 5, где h — высота, опущенная из вершины прямого угла.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57480

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 2
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что  cn > an + bn при n > 2.
Прислать комментарий     Решение


Задача 57481

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 3
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.
Прислать комментарий     Решение


Задача 57482

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что для прямоугольного треугольника 0, 4 < r/h < 0, 5, где h — высота, опущенная из вершины прямого угла.
Прислать комментарий     Решение


Задача 57483

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что  c/r $ \geq$ 2(1 + $ \sqrt{2}$).
Прислать комментарий     Решение


Задача 57484

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 5
Классы: 8

ABC - прямоугольный треугольник с прямым углом C. Докажите, что  ma2 + mb2 > 29r2.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .