Версия для печати
Убрать все задачи
Внутри треугольника
ABC взята точка
X. Прямая
AX
пересекает описанную окружность в точке
A1. В сегмент,
отсекаемый стороной
BC, вписана окружность, касающаяся дуги
BC в точке
A1, а стороны
BC — в точке
A2. Точки
B2 и
C2 определяются аналогично. Докажите, что прямые
AA2,
BB2 и
CC2 пересекаются в одной точке.

Решение
Точка
A расположена на расстоянии 50 см от центра
круга радиусом 1 см. Разрешается отразить точку симметрично
относительно любой прямой, пересекающей круг. Докажите, что:
а) за 25 отражений точку
A можно к загнатьк внутрь
данного круга; б) за 24 отражения этого сделать нельзя.

Решение