ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC высота AH равна медиане BM.
Найдите угол MBC.
а) Диагонали выпуклого четырехугольника ABCD
пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP.
Найдите площадь треугольника ADP.
Даны параллелограмм ABCD и некоторая точка M.
Докажите, что
SACM = | SABM±SADM|.
Докажите, что треугольник ABC является правильным
тогда и только тогда, когда при повороте на
60o (либо по
часовой стрелке, либо против) относительно точки A вершина B
переходит в C.
Докажите, что при n ≠ 4 правильный n-угольник
нельзя расположить так, чтобы его вершины оказались
в узлах целочисленной решетки.
На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах
клеток. Докажите, что если треугольник ABC остроугольный, то внутри или
на сторонах его есть по крайней мере еще одна вершина клетки.
Докажите, что при повороте окружность переходит в окружность.
|
Страница: 1 [Всего задач: 5]
Докажите, что при повороте окружность переходит в окружность.
Докажите, что выпуклый n-угольник является правильным тогда и только
тогда, когда он переходит в себя при повороте на угол
360o/n
относительно некоторой точки.
Докажите, что треугольник ABC является правильным
тогда и только тогда, когда при повороте на
60o (либо по
часовой стрелке, либо против) относительно точки A вершина B
переходит в C.
Докажите, что середины сторон правильного многоугольника образуют
правильный многоугольник.
Через центр квадрата проведены две перпендикулярные
прямые. Докажите, что их точки пересечения со сторонами
квадрата образуют квадрат.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке