ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На рис. изображен шестиугольник, разбитый на чёрные и белые треугольники так, что каждые два треугольника имеют либо общую сторону (и тогда они окрашены в разные цвета), либо общую вершину, либо не имеют общих точек, а каждая сторона шестиугольника является стороной одного из черных треугольников. Докажите, что десятиугольник разбить таким образом нельзя.

   Решение

Задачи

Страница: 1 [Всего задач: 2]      



Задача 58168  (#23.009)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Раскраски ]
[ Делимость чисел. Общие свойства ]
[ Многоугольники (прочее) ]
Сложность: 4+
Классы: 8,9,10

На рис. изображен шестиугольник, разбитый на чёрные и белые треугольники так, что каждые два треугольника имеют либо общую сторону (и тогда они окрашены в разные цвета), либо общую вершину, либо не имеют общих точек, а каждая сторона шестиугольника является стороной одного из черных треугольников. Докажите, что десятиугольник разбить таким образом нельзя.

Прислать комментарий     Решение

Задача 58169  (#23.010)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Поворот помогает решить задачу ]
[ Разрезания на параллелограммы ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9,10

Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток.
Докажите, что сумма длин этих отрезков делится на 4. (Длина стороны клетки равна 1.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 2]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .