ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
M1, M2,..., M6 — середины сторон выпуклого
шестиугольника
A1A2...A6. Докажите, что существует
треугольник, стороны которого равны и параллельны отрезкам M1M2,
M3M4, M5M6.
Существует ли тетраэдр, в сечениях которого двумя разными плоскостями получаются квадраты $100\times100$ и $1\times1$? На плоскости дано бесконечное множество прямоугольников, вершины
каждого из которых расположены в точках с координатами (0, 0), (0, m),
(n, 0), (n, m), где n и m — целые положительные числа
(свои для каждого прямоугольника). Докажите, что из этих прямоугольников
можно выбрать два так, чтобы один содержался в другом.
В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков. После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч? От потолка комнаты вертикально вниз по стене поползли две мухи. Спустившись до пола, они поползли обратно. Первая муха ползла в оба конца с одной и той же скоростью, а вторая хотя и поднималась вдвое медленнее первой, но зато спускалась
вдвое быстрее. На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах
клеток. Докажите, что если треугольник ABC остроугольный, то внутри или
на сторонах его есть по крайней мере еще одна вершина клетки.
|
Страница: 1 2 3 4 >> [Всего задач: 18]
Существует ли правильный треугольник с вершинами в узлах целочисленной
решетки?
Докажите, что при n ≠ 4 правильный n-угольник
нельзя расположить так, чтобы его вершины оказались
в узлах целочисленной решетки.
Можно ли прямоугольный треугольник с целыми
сторонами расположить так, чтобы его вершины лежали
в узлах целочисленной решетки, но ни одна из его сторон
не проходила по линиям решетки?
Существует ли замкнутая ломаная с нечетным числом звеньев равной
длины, все вершины которой лежат в узлах целочисленной решетки?
На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах
клеток. Докажите, что если треугольник ABC остроугольный, то внутри или
на сторонах его есть по крайней мере еще одна вершина клетки.
Страница: 1 2 3 4 >> [Всего задач: 18]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке